

CHEMISCHE BESTÄNDIGKEITEN

CHEMIKALIENFESTE PUMPEN FÜR AGGRESSIVE UND GEFÄHRLICHE MEDIEN

CHEMISCHE BESTÄNDIGKEITEN

Chemikalienfeste Pumpen für aggressive und gefährliche Medien

Beim Transport von chemischen Substanzen kommt es auf die Details an - daher finden Sie in der nachfolgenden Tabelle auch Angaben wie Temperatur und Dichte. Als Richtwert haben wir für unsere Angaben handelsübliche Reinheit und Konzentrationen vorausgesetzt. Falls das bei Ihnen anders sein sollte, melden Sie sich bitte bei uns! Wir helfen Ihnen mit Rat und Tat weiter.

Unsere Beständigkeitsliste haben wir mit größter Sorgfalt erstellt. Sie beruht auf all unserem Wissen, auf den Empfehlungen unserer Lieferanten und auf den Erfahrungen unserer Kunden. Dennoch können wir keine Gewähr für die Angaben übernehmen. Wir sind uns aber sicher, dass wir Ihnen in allen Fragen rund um die aufgelisteten Substanzen weiterhelfen können. Also zögern Sie nicht uns zu kontaktieren, unsere Kontaktdaten finden Sie auf der Rückseite.

- beständig
- bedingt beständig
- nicht beständig

SCHMITT	•	Temperatur °C		DF	Edelstahl 1.4571	Hastelloy C4 2.4610	Σ	ЕРДМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel		Te ပ	P	PVDF	Ede	Has 2.4	FKM	EPI	PTF	Ę	Dic kg/
Acetaldehyd 40%	CH ₃ -CHO	20		•	•	•	•	•		•	
		40	•	•	•	•	•	•		•	
		60	•	•	•	•	0	•	•	•	
Acetaldehyd TR	CH₃-CHO	20	0	•	•	•	0	0	•	•	0,79
		40	•		•	•		<u> </u>	•	•	
Acetamid TR	CH ₃ -CO-NH ₂	20	•	•	•	•	•	•	•	•	0,98
		40	•	•	•	•	•	•	•	•	
Acctombuddid TD	(CIL CO) O	60	•	•	•	•	•	0	•	•	1.00
Acetanhydrid TR	(CH ₃ CO) ₂ O	20 40		•		•	•	•			1,09
		60	<u> </u>	•				•			
Acetylendichlorid TR		20			•			•		•	1,22
Acetyleriaicilloria TK	C ₂ H ₂ Cl ₂	40							•	•	
		60	•		•	•	•	•	•	•	
Aceton 10 %	CH ₃ -CO-CH ₃ +H ₂ O	20		•	•	•			•	•	
7.00.00.120 //	2.13 20 2.13 1.20	40	•		•	•	•	•	•	•	
		60	•		•	•	•	•	•	•	
Aceton TR	CH ₃ -CO-CH ₃	20		0	•		•				0,79
	3 3	40		0	•		•	0			
		60	0	•		•	•	•	•	•	
Acetonitril TR	CH ₃ -CN	20		0			<u> </u>	0			0,78
		40		•			0	•			
		60		•	•	•	0	•			
Acrylnitril TR	CH ₂ =CH-CN	20			•		0	0			0,81
		40	0	0			0	0			
		60	<u> </u>	•			•	•			
Acrylsäurebutylester TR	C ₅ H ₈ O ₂	20	•	•	•	•	•	<u> </u>	•		
Adipinsäure GL	$C_7 H_{12} O_2$	20		•	•	•			•	•	0,89
		40				•					
		60				•	•				
Akkusäure 40 %	H_2SO_4	20			•						
		40	•	•	•	•	•	•	•	•	
		60	<u> </u>	•	•	<u> </u>	•	•	•	•	
Alaun 50 %	KAI(SO ₄)·2H ₂ O	20									
		40			•	•			•		
		60			•	•	•		•	•	
Allylalkohol 96 %	H ₂ C=CH-CH ₂ -OH	20			•	•	0	0	•		0,87
		40	•	•	•	•	•	0	•	•	
		60	•	•		•	•	0	•	•	
Aluminiumchlorid 10 %	AICI ₃	20	•	•	•	•	•	•	•	•	
		40	•	•		•	•	•	•	•	
		60	•	•		•	•	•	•	•	
Aluminiumchlorid GL	AICI ₃	20	•	•	•	•	•	•	•	•	2,40

Bezeichnung / Formel		Temperatur °C	B	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	EPDM	PTFE/FEP	FFKM	Dichte kg/dm³
Aluminiumchlorid GL	AICI ₃	40	•	•	•	•	•			•	
		60			•	•					
Aluminiumnitrat GL	AI(NO ₃) ₃	20	•		•	•					
		40									
		60	•	•	•	•	•	•	•	•	
Aluminiumsulfat 10 %	$Al_2(SO_4)_3$	20	•				•				
		40	•	•	•	•		•	•	•	
		60	•	•	•	•		•	•	•	
Aluminiumsulfat GL	Al ₂ (SO ₄) ₃	20	•	•	•	•	•	•	•	•	1,61
		40	•	•	<u> </u>	•	•	•	•	•	
		60	•				•			•	
Ameisensäure 50 %	НСООН	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•		•	•	
A	HCOOL	60	•	•	<u> </u>	•	•	•	•	•	1 22
Ameisensäure 85 %	НСООН	20 40	•	•	•	•	•	•	•	•	1,22
		60	•							•	
Ameisensäureamid 100 %	HCONH,	20		•		-		•	•	•	
Amersensaureanna 100 //	TICONTI ₂	40					•				
		60	•	•		•	•	•	•	•	
Ammoniakwasser GL	NH ₄ OH	20	•	•	•	•	•	•	•	•	
	4	40	•	•	•	•	•	•	•	•	
		60			•		•	•	•	•	
Ammoniumacetat	CH ₃ -COONH ₄ +H ₂ O	20									
	3 7 2	40	•		•	•			•		
		60									
Ammoniumbromid 40 %	NH ₄ Br+H ₂ O	20			0	•					1,27
		40	•		0						
		60			•	0					
Ammoniumcarbonat 25 %	(NH ₄) ₂ CO ₃ +H ₂ O	20									
		40	•			•					
		60	•	•	•	•		•	•	•	
Ammoniumchlorid GL	NH ₄ CI+H ₂ O	20			•	•					1,07
		40									
		60			•	•					
Ammoniumfluorid 14%	NH ₄ F+H ₂ O	20			•	•		•			
		40	•		0		•				
		60	•		•	•	•	<u> </u>	•	•	
Ammoniumfluorsilikat TR	(NH ₄)SiF ₆ +H ₂ 0	20	•	•	•	•	•	•	•	•	
Ammoniumhydrogenfluorid 50 %	(NH ₄)HF ₂	20	•	•	<u> </u>	0	•	•	•	•	
		40	•	•	•	0	0	•	•	•	
		60	•	•	•		0	•	•	•	
Ammoniummonophosphat 10 %	NH ₄ H ₂ PO ₄ +H ₂ O	20		•	•	•		•	•	•	

SCHMITT Persishaung / Sermel		Temperatur	Ь	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel Ammoniummonophosphat 10 %	NH ₄ H ₂ PO ₄ +H ₂ O	40	<u> </u>		<u> </u>	I N	<u> </u>	<u> </u>		<u> </u>	<u> </u>
Animoniuminonophosphat 10 /0	NII ₄ II ₂ FO ₄ ·II ₂ O	60									
Ammoniumnitrat 10 %	NH ₄ NO ₃ +H ₂ O	20	•	•	•	•	•		•	•	
		40							•		
		60			•	•					
Ammoniumnitrat 50 %	NH ₄ NO ₃ +H ₂ O	20									1,23
		40									
		60				•					
Ammoniumnitrat GL	NH ₄ NO ₃ +H ₂ O	20			•				•		
		40			•	•			•	•	
		60	•		-					•	
Ammoniumoxalat TR	$(COONH_4)_2 + H_2O$	20	•	•	•	•	•	•	•	•	1,50
		40	0	•	•	•	•		•	•	
0	NILL CIO ALLI O	60	•	•	•	•	•		•	•	1.07
Ammoniumperchlorat 14 %	NH ₄ CIO ₄ +H ₂ O	20 40		•	•	•	•	•	•	•	1,07
		60						•			
Ammoniumphosphat 10 %	NH ₄ H ₂ PO ₄ +H ₂ O	20	•	•	•		•	•	•	•	
/ minorial prospriat 10 //	41121 04 1120	40	•	•	•	•	•				
		60	•		•	•	•	•	•	•	
Ammoniumsulfat 10 %	(NH ₄) ₂ SO ₄ +H ₂ O	20	•		•	•					
		40									
		60				•					
Ammoniumsulfat 50 %	(NH ₄) ₂ SO ₄ +H ₂ O	20									1,28
		40									
		60							•		
Ammoniumsulfat GL	$(NH_4)_2SO_4+H_2O$	20									1,30
		40			•	•			•	•	
		60			•	•			•		
Ammoniumsulfid 10 %	NH ₄ S+H ₂ O	20			•	•		•			
		40	•	•	•	•	•	•	•	•	
		60	•	•	•	•	•	•	•	•	
Ammonsalpeter 10 %	NH ₄ NO ₃ +H ₂ O	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
Ammonsalpeter 50 %	NH ₄ NO ₃ +H ₂ O	60 20				•	•			•	1,23
Annionsalpeter 30 %	INTI ₄ INO ₃ ±n ₂ O	40	•				•			•	±,43
		60		•	•	•	•	•			
Ammonsalpeter GL	NH ₄ NO ₃ +H ₂ O	20	•	•	•	•	•	•	•	•	
	4 - 3 - 2	40	•	•	•	•	•		•	•	
		60	•	•	•	•	•	•	•	•	
Amylacetat TR	CH ₃ -COOC ₅ H ₁₁	20	0	•	•	•	•	•		•	0,88
	, , , , , , ,	40	•	0	•	•	•	•			

SCHMIT		Temperatur °C		PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	Σ	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel		၂၈ ပ	В	P	1.4 1.4	Ha :	FKM	<u>-</u>	PTI	Ē	Dic kg/
Amylacetat TR	CH ₃ -COOC ₅ H ₁₁	60	•	<u> </u>	•	•	•	•	•	•	
Amylalkohol TR	C ₅ H ₁₁ OH	20	•	•	•	•	•	•	•	•	0,82
		40	•	•	•	•	•	•	•	•	
	511 (511) 51	60	•	•	•		<u> </u>	•	•	•	
Amylchlorid TR	CH ₃ (CH ₂) ₄ CI	20	•	•	•	•	•	•	•	•	0,87
		40	•	•	•	•	•	•	•	•	
Anilin TR	C ₆ H ₅ NH ₂	20		•						•	1,01
Allilli IK	C ₆ П ₅ NП ₂	40	•	•			•	•			1,01
		60									
Anon TR	C ₆ H ₁₀ O	20			•		•		•		0,95
Apfelsäure 50 %	HOOC-CH ₂ -CHOH-COOH	20	•	•	•	•		•	•	•	
7.07.0.344.0.2070		40	•		•	•		•	•		
		60	•	•	•	•	•	•	•	•	
Arsensäure 10 %	H ₂ ASO ₄	20			•	•	•	•	•	•	
	3 4	40									
		60			•	•		•	•		
Arsensäure 80 %	H ₃ ASO ₄	20	•	•	•	•		•	•		
	7	40	•	•	•	•		•	•		
		60									
Ätzbaryt GL	Ba(OH) ₂	20				•					
		40									
		60		0							
Ätzkali 20%	КОН	20					•				1,19
		40					•	0			
		60		•		•	•	0	•		
Ätzkali 30%	КОН	20					•				1,29
		40					•	•			
		60			•	•	•	0	•		
Ätzkali 60%	КОН	20					•				1,63
		40					•				
		60	•	•	•	•	•	•	•		
Ätznatron 10 %	NaOH	20	•	0	•	•		•	•	•	1,16
		40	•	0	•	•		•	•		
		60	•	0			0		•	•	
Ätznatron 30 %	NaOH	20		0	•	•	0	•			1,33
		40		0	•	•	0	•			
		60	•	0	•	•	0	•	•		
Ätznatron 50 %	NaOH	20	•	0	•	•	0	•	•		1,53
		40	•	0	•	•	0	•	•	•	
		60	•	0	0	•	•	•	•	•	
Bariumchlorid 10 %	BaCl ₂	20	•	•	•	•	•	•	•	•	
		40			•					•	

SCHMITT Bezeichnung/Formel		Temperatur °C	d.	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bariumchlorid 25 %	BaCl ₂	20	_	_	0	•	•		-	_	1,27
	_	40			0						
Bariumhydroxid GL	Ba(OH) ₂	20							•		
		40			•						
		60		0	•	•					
Bariumsulfid 10 %	BaS	20	•	•	•	•			•	•	
Benzaldehyd	C ₆ H ₅ CHO	20	0	•	•	•	•	<u> </u>	•	•	1,05
		40	•	0	•	•	•		•	•	
D 111 120%	5 11 5110	60	•	<u> </u>	•	•	•		•	•	
Benzaldehyd 30 % Benzaldehyd TR	C _e H _s CHO	20	•	•	•	•	•	•	•	•	1,05
Benzin H	C ₆ n ₅ cno	20	•					•		•	0,73
Deliziii II		40				•					
		60	•	•	•	•		•			
Benzoesäure 10 %	C _s H _s COOH	20	•		•	•		•	•		1,27
	0 3	40			•	•		•		•	
		60	•			•		•			
Benzol TR	C_6H_6	20	•			•		•			0,88
Benzylalkohol TR	C ₆ H ₅ -CH ₂ OH	20	•	•	•	•	0		•	•	1,04
		40					0	<u> </u>			
		60	<u> </u>	•	•	•	0	•	•		
Benzylchlorid	C ₆ H ₅ -CH ₂ CI	20	•					•	•		1,11
		40	•	•	•	•		•		•	
		60	•		•		_			•	
Bernsteinsäure 50 %	$C_4H_6O_4$	20	•	•	•	•	•	•	•	•	1,06
		40	•	•	•	•	•	•	•	•	
Bittermandelöl	C _E H _S CH0	20	•	•	•	•	•	•	•	•	1,05
Bittermanderor	C ₆ n ₅ CHO	40	•	•			•	•			1,05
		60	•	•	•	•	•				
Bittermandelöl 30 %	C ^e H ^e CH0	20	•		•	•	•	•	•	•	
Bittermandelöl TR	C _s H _s CHO	20	0	•	•	•	0	0	•	•	1,05
Bittersalz 10 %	MgSO ₄	20	•		•	•			•		
		40									
		60				•					
Bittersalz GL	MgSO ₄	20									1,28
		40	•	•	•	•	•		•	•	
		60			•	•	•		•	•	
Blausäure GL	HCN	20	•	•			0	0	•	•	
		40			•	•	0	<u> </u>	•	•	
		60	•	•	<u> </u>	•	<u> </u>	<u> </u>	•	•	
Bleiacetat 10 %	$C_4H_6O_4Pb$	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	

S SCHMITT		Temperatur °C		PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	Σ	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel			Ь				FKM				Pic Kg
Bleiacetat 10 %	$C_4H_6O_4Pb$	60	-	•	•	•	•	•	•	•	
Bleiacetat GL	$C_4H_6O_4Pb$	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
DI : II 40%	N. O.C.	60	•	•	•	•	•	•	•	•	
Bleichlauge 10 %	NaOCI	20	•	•		•	•	•	•	•	
Bleichlauge 12,5 %	NaOCI	20 40	•	•	•	•	•	•	•	•	
Bleichlauge 20 %	NaOCI	20	•								
bieiciliauge 20 %	NdOCI	40									
		60	•								
Bleinitrat 50 %	Pb(NO ₃) ₂	20							_	•	
Bleitetraethyl TR	Pb(NO ₃) ₂	20	•		•				•	•	1,66
Bleizucker 10 %	C ₄ H ₆ O ₄ Pb	20	•	•	•	•	•	•	•	•	
DIEIZUCKEI 10 //	C ₄ 11 ₆ O ₄ 1 b	40				•		•			
		60	•		•	•	•	•			
Bleizucker GL	C ₄ H ₆ O ₄ Pb	20	•		•	•	•	•		•	
onenzaeken de	24.1604.0	40	•		•	•		•	•	•	
		60	•		•	•	•	•	•	•	
Borax 10 %	Na ₂ B ₄ O ₇ +10 H ₂ 0	20	•	•	•	•	•	•	•	•	1,03
	241 2	40			•	•	•	•		•	
		60			•						
Borax GL	Na ₂ B ₄ O ₇ +10 H ₂ 0	20	•			•					
		40				•					
		60									
Borsäure 10 %	H ₃ BO ₃ +H ₂ O	20									1,01
		40	•			•					
		60	•			•					
Borsäure GL	H ₃ BO ₃ +H ₂ O	20				•					
		40									
		60									
Bortrifluorid 10 %	BF ₃ +H ₂ 0	20	•		0	0		•			
Bremsflüssigkeit	Glykolether		•				•				
Brom TR	Br ₂	20	•		•	•	0	•	•		3,19
Bromkali 10 %	KBr + H ₂ 0	20									1,37
		40									
		60			<u> </u>		•				
Bromkali GL	KBr + H ₂ 0	20		•	•	•	•	•	•	•	
		40			•	•	•	•	•	•	
		60			•	•		•			
Bromsäure 10 %	HBrO ₃	20			•	•		•			
		40		•	•	•		•			
		60	0		•	•		•			
Bromwasserstoffsäure 10 %	HBr + H ₂ 0	20			•	0					1,07

Bezeichnung / Formel		Temperatur °C	dd.	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bromwasserstoffsäure 10 %	HBr + H ₂ 0	40			Ψ.Π		•			•	
Dioniwasserstonsaure 10 /0	1151 - 1120	60			•	•	•	•	•	•	
Bromwasserstoffsäure 48 %	HBr + H ₂ 0	20	•	•	•	•			•	•	1,44
	-	40	•		•	•		•	•	•	
		60	•		•	•		•	•	•	
Butancarbonsäure 20 %	C₃H₂COOH	20	•			•					0,88
Butancarbonsäure TR	C₃H ₇ COOH	20	•		•	•	0	0			0,96
Butanol TR	C ₄ H ₉ OH	20				•					0,81
		40	0				0			•	
		60	•	•	•	•	0	•	•	•	
Butanon (MEK) TR	C ₄ H ₈ O	20		•			•				0,81
		40	<u> </u>	•			•	<u> </u>			
		60	•	•			•	•			
Butantriol TR	$C_4H_{10}O_3$	20	•			•	<u> </u>			•	
Butenal, trans-2 TR	C ₄ H ₆ 0	20	•			•					
Buttersäure 20 %	C ₃ H ₇ COOH	20	•			•					0,88
Buttersäure TR	C₃H ₇ COOH	20	•			•	<u> </u>	0			0,96
Butylacetat TR	$C_6H_{12}O_2$	20	•			•	<u> </u>				0,88
Butylacrylat TR	C ₅ H ₈ O ₂	20	•	<u> </u>		•	•	•			
Butylalkohol TR	C ₄ H ₉ OH	20			•						0,81
		40	<u> </u>				<u> </u>				
		60	<u> </u>			•	<u> </u>	•	•	•	
Butylchlorid TR	C ₄ H ₉ CI	20	•		0	•	•	•	•	•	0,89
		40	•		0	•	•	•	•	•	
		60	•		<u> </u>	•	•	•	•	•	
Butylenglykol 10 %	HO(CH ₂) ₄ OH	20				•			•	•	
		40	•		•	•			•	•	
		60			•	•				•	
Butylenglykol TR	HO(CH ₂) ₄ OH	20	•		•						
		40	<u> </u>			•		•	•	•	
		60	<u> </u>	•	•	•	<u> </u>	•	•	•	
Butylether TR	C ₈ H ₁₈ O	20	<u> </u>		•	•	•	<u> </u>	•	•	0,77
		40	•		•	•	•	<u> </u>	•	•	
		60	•	•	•	•	•		•	•	
Butylphen TR	HOC ₆ H ₄ C(CH ₃) ₃	20	•	•	•	•	0	_	•	•	
Butylphenol TR	HOC ₆ H ₄ C(CH ₃) ₃	20	•		•		<u> </u>		•	•	
Calciumbisulfit 10 %	Ca(HSO ₃) ₂	20	•	•	•	•	•	•	•	•	
Calciumbisulfit GL	Ca(HSO ₃) ₂	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
		60		_	•	•	•	•			
Calciumchlorat 10 %	CaClO ₃ +H ₂ O	20	•	_	•	•	•	•		•	
Calciumchlorid 10 %	CaCl ₂ +H ₂ 0	20	•	•	•	•	•	•	•	•	
		40									

SCHMITT	•	Temperatur °C	•	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel			<u>B</u>								
Calciumchlorid 10 %	CaCl ₂ +H ₂ O	60	•	•	•	•	•	•	•	•	1.40
Calciumchlorid GL	CaCl ₂ +H ₂ O	20	•	•	•	•	•	•	•	•	1,40
		40 60	•	•	•	•	•	•	•	•	
Calciumhydroxyd 15 %	Ca(OH),	20		•			•	•	•		
Calciumnyuroxyu 13 //	Ca(OII) ₂	40									
		60									
Calciumhypochlorit 10 %	Ca(OCI),	20	•	•		•	•	•			
culcianing poemone 10 %	ca(oc., ₂	40	•			•		•	•	•	
		60	•		•			•		•	
Calciumnitrat 50 %	Ca(NO ₃) ₂	20	•	•		•	•	•	•	•	1,48
	3/2	40	•	•	•	•	•	•	•	•	,
Caprylsäure	CH₃(CH₂) ₆ COOH	20	•	•	•	•	•	•	•	•	0,92
	31 270	40	0					0			
		60	•			•	<u> </u>	•	•		
Carbamid 10 %	CH ₄ N ₂ O	20	•		•	•	•	•			
Carbamid 33 %	CH ₄ N ₂ O	40	•			•				•	
		60									
Carbonsäuren 100 %	C ₁₇ H ₃₃ CO ₂ H	20	0			•		•			0,90
3750113dd1C11 100 70		40	0					•			
		60	0					•			
Cellosolve TR	C ₂ H ₅ -0-CH ₂ -HC ₂ OH	20	•					•			0,93
		40	•					•			
		60	•		•	•		•			
Chlorbenzol TR	C ₆ H ₅ CI	20	•			•		•			1,11
		40	0			•	•	•	•		
		60	•			•	•	•			
Chlorbleichlauge 10 %	NaOCI	20			•						
Chlorbleichlauge 12,5 %	NaOCI	20			•						
		40	•		<u> </u>		<u> </u>	•			
Chlorbleichlauge 20 %	NaOCI	20	•	•	•	•	•	•	•	•	
		40	0	•	0	•	0	0	•	•	
		60	•	•	<u> </u>	•	<u> </u>	<u> </u>	•	•	
Chlorbutan TR	C₄H ₉ CI	20			0		•	•			0,89
		40			•		•	•			
		60	•	•		•	•	•	•	•	
Chlorcalcium 10 %	CaCl ₂ +H ₂ 0	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
		60	•	•	0	•	•	•	•	•	
Chlorcalcium GL	CaCl ₂ +H ₂ O	20	•	•	•	•	•	•	•	•	1,40
		40	•	•	•	•	•	•	•	•	
		60		•		•	•	•	•	•	
Chlordiphenyl TR	C ₁₂ H ₉ CI	20	•	•	•	•		•			

Bezeichnung / Formel		Temperatur °C	8	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	EPDM	PTFE/FEP	FFKM	Dichte kg/dm³
Chloressigsäure 85 %	C ₂ H ₃ CIO ₂	20	_		•	•	-	•	-	-	1,36
	2 3 2	40	•		•	0			•	•	
		60			•	•					
Chloressigsäure 98 %	$C_2H_3CIO_2$	20			•						
		40			•	0					
		60	•	•	•	0		•	•	•	
Chloressigsäureethylester	CIH ₂ C-CO-OC ₂ H ₅	20		0	0		•				
		40		0	0		•				
		60	•	•	•	•	•				
Chlorethan TR	C ₂ H ₅ CI	20	•			•	<u> </u>	•			0,92
Chlorethanol TR	CIH ₂ C-CH ₂ OH	20	•	•	•	•	•	•	•	•	1,20
		40	•	0	•	•	•	0	•	•	
		60	•	<u> </u>	•	•	•	<u> </u>	•	•	
Chloritbleiche 5 %	NaCIO ₂	20			0						
		40			•	0					
		60	•	•	•			•	•	•	
Chloroform TR	CHCI ₃	20		•	•	•	<u> </u>	•	•	•	1,48
Chlorothene TR	C ₂ H ₃ Cl ₃	20		•	•		<u> </u>	•	•	•	1,34
Chlorsäure 10 %	HCIO ₃	20	•	•	<u> </u>	•	•	•	•	•	
		40	•	•	<u> </u>	<u> </u>	•	•	•	•	
		60	<u> </u>	•			•	•	•	•	
Chlorschwefelsäure TR	HOSO ₂ CI	20		_	•		<u> </u>			•	1,77
Chlorsulfonsäure TR	HOSO ₂ CI	20		•		•	0			•	1,77
Chlortoluol	C ₆ H ₅ -CH ₂ CI	20	•	•	•	•	•	•	•	•	1,11
		40	•	•	•	•	•	•	•	•	
		60		<u> </u>	•	•	•		•	•	
Chlorwasser GL	CI ₂ + H ₂ 0	20	0	•		•	•	•	•	•	
		40	0	•	•	•	•	•	•	•	
CI.I		60		•			•	<u> </u>	•	•	
Chlorwasserstoffsäure 10 %	HCI	20	•	•	•	•	•	•	•	•	1,05
		40	•	•	•	0	•	•	•	•	
Chlarius 200/	uci	60	•	•	•	•	•	•	•	•	1 1 5
Chlorwasserstoffsäure 30 %	HCI	20			•	•		•		•	1,15
		40 60			•						
konzentrierte Chlorwasserstoffsäure	HCI	20			•			•			1,20
KONSCIPLIE CHIOIWASSEISTONISANIE	iici	40				•		•		•	1,20
		60		•	•		•	•	•		
Chlorzinklauge 20 %	ZnCl ₂	20			•			•	•	•	1,19
CINO. ZIIIKIUUBC EU /II	ZIICI ₂	40						•			
		60	•		•						
					•						
Chlorzinklauge 75 %	ZnCl ₂	20			_						2,07

SCHMIT		Temperatur °C	<u>a</u>	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Chlorzinklauge 75 %	ZnCl ₂	60	•		Ψ.		•	ш	•	•	
Chromsäure 30 %	CrO ₃ +H ₂ O	20							•		
Chromsäure 50 %	CrO ₃ +H ₂ O	20	•			•					
Cilionisaure 50 %	CIO ₃ ·II ₂ O	40									
		60							•		
Chromschwefelsäure 50 %	H ₂ SO ₄ +H ₂ O+CrO ₃	20					•			•	
emomsenwereisaare 50 /s	25042603	40	•			•	•	•			
		60							•		
Chromtrioxid 30 %	CrO ₃ +H ₂ O	20		•			•		•	•	
Chromtrioxid 50 %	CrO ₃ +H ₂ O	20	•				•				
	2.0320	40	•			•	•	•	•		
		60	•				•	•	•		
Clophen TR	C ₁₂ H ₉ CI	20	•	•	•	•	•	•	•		
Crotonaldehyd TR	C ₄ H ₆ O	20	•	•	•		•		•		
Cyanwasserstoff TR	HCN	20	•		•	•	•	•	•	•	0,69
Cyanwasserstoffsäure GL	HCN	20	•		•	•					-,
•	HCN	40	•	•	•	•			•	•	
	HCN	60	•	•	0	•			•	•	
Cyclohexan TR	C ₆ H ₁₂	20	•	•	•	•	•	•	•	•	0,78
- y	-6. 12	40	•	•	•	•	•	•	•	•	
		60	0	•			•	•			
Cyclohexanol TR	C ₆ H ₁₂ 0	20	•	•	•	•	0		•	•	0,94
	. P 15.	40	•	•	•	•	•	•	•	•	
Cyclohexanon TR	C ₆ H ₁₀ O	20	•	•	•	•	•		•		0,95
Decahydronaphthalin TR	C ₁₀ H ₁₈	20	<u> </u>	•	•		•	•	•		0,88
	10 10	40	•					•			
		60	0					•			
Dekalin TR	C ₁₀ H ₁₈	20	<u> </u>					•			0,88
	10 10	40	<u> </u>					•			
		60	0					•			
Dextrin 18 %	C ₆ H ₁₀ O ₅ +H ₂ O	20	•	•	•						
	0 10 3	40	•			•					
		60	•								
Dextrin GL	$C_6H_{10}O_5+H_2O$	20	•								
Dextronsäure	C ₆ H ₁₂ O ₇	20	•	•	•						
	0 12 /	40		•	•	•		•			
		60	•	•	•	•		•			
Diacetonalkohol TR	(CH ₃) ₂ C(OH)CH ₂ COCH ₃	20	•	•	•	•		•	•		
	5.2	40	•	•	•	•		•			
		60	•	•	•	•	•	•		•	
Diamidhydrat TR	H ₂ N-NH ₂	20									1,08
	2 2	40	0	•	•	•	•	0	•	•	
		60	•		•	•	0	•			

Ş SCHMITT		Temperatur °C		PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel			В								
Dibromethan TR	CH ₂ Br-CH ₂ Br	20	•	<u> </u>	•	•	•	0	•	•	2,18
		40	•	0	•	•	•		•	•	
DII . I . I . TD	511.0	60	•	•	•	•	•		•	•	
Dibutylether TR	C ₈ H ₁₈ O	20 40	•	•	•	•	•	•	•	•	0,77
		60									
Dibutylphthalat TR	$C_6H_4(CO_2C_4H_9)_2$	20				•	•			•	1,05
o o o o o o o o o o o o o o o o o o o	64(2.2-49/2	40	•		•	•	•	•		•	
		60	0		•	•	•	•	•	•	
Dibutylsebacat TR	C ₁₈ H ₃₄ O ₄	20					<u> </u>	•			0,94
		40					0	•			
		60				•	0	•	•		
Dichloridfluormethan TR	CF ₂ CI ₂	20	•				0	0			1,32
Dichloressigsäure TR	CHCI ₂ CO ₂ H	20	•		•	•	0				1,56
		40			•	•	0		•		
		60	<u> </u>		•	•	•	<u> </u>			
Dichlorethan	H ₃ C-CHCl ₂	20	•	•	•	•		•	•	•	1,20
		40	0					0			
		60	•	•	•	•	0	•	•	•	
Dichlorethylen 1,1 TR	C ₂ H ₂ Cl ₂	20	<u> </u>	•	•	•	•	•	•	•	1,22
		40	<u> </u>	•	•	•	•	•	•	•	
		60	<u> </u>	•	•		•	•	•	•	
Dichlormethan	CH ₂ Cl ₂	20	0	0	•	•	0	•	•	•	1,33
Diesel H		20	•	•	•	•	•	•	•	•	-
Diezei H		40									
		60	•		•	•			•		
Diethanolamin	HN(CH ₂ CH ₂ OH) ₂	20		•	•	•	•			•	1,10
	(e2e2e/2	40	•	•	•	•	•	•	•	•	
		60		•	•		0		•		
Diethylamin 10 %	C ₄ H ₁₁ N	20	•	<u> </u>	•	•	•			•	0,70
Diethylcellosolve TR	C ₂ H ₅ -O-CH ₂ -HC ₂ OH	20	•			•		•	•		0,93
		40	•			•		•			
		60	•					•			
Diethylenoxid TR	C ₄ H ₈ O	20	0	0			0	0			0,89
		40	•	•			0	•			
		60	•	•			0	•			
Diethylether TR	$(C_2H_5)_2O$	20	•	•	•	•	0	0		•	0,71
Diglykolsäure 30 %	$C_4H_6O_6$	20		•	•	•					
		40	•				•	0	•		
		60			•	•		0		•	
Diglykolsäure GL	C ₄ H ₆ O ₆	20	•	•	•	•		•	•		
Diisobutylketon TR	$C_9H_{18}O$	20	•		•	•			•	•	

14 Stand: 05/2020

Ş SCHMITT		Temperatur °C		Ē	Edelstahl 1.4571	Hastelloy C4 2.4610	_	Σ	PTFE/FEP	Σ	ite E
Bezeichnung / Formel		Tem ိင	В	PVDF	Edel 1.45	Has 2.46	FKM	EPDM	PTF	FFKM	Dichte ke/dm³
Diisobutylketon TR	$C_9H_{18}O$	40					•				
		60	•		•	•	•			•	
Diisopropylether TR	$C_6H_{14}O$	20	•			•	•	•	•		0,73
		40	•	<u> </u>	•	•	•	•	•	•	
		60				•	•				
Dimethyl-4-heptanon 2.6. TR	C ₉ H ₁₈ O	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
Dim athede min TD	(CIL) NIII	60	•		•	•	•		•	•	0.77
Dimethylamin TR Dimethylbenzol TR	(CH ₃) ₂ NH	20	•	<u> </u>	•	•	•		•	•	0,73
DIMETNYIDENZOI I K	C ₆ H ₄ (CH ₃) ₂	40	•	•	•	•	•	•	•	•	0,86
		60		•			•			•	
 Dimethylformamid (DMF) TR	C₃H₂NO	20	•	•	-	•	•		•	•	0,95
	C ₃ 11 ₇ 140	40			•	•					0,55
		60		•	•	•	•				
Dimethylphthalat (DMP) TR	C ₆ H ₄ (COOCH ₃) ₂	20	•		•	•	•	•	•	•	
, , , , , , , , , , , , , , , , , , ,	6 41 3/2	40	•		•	•	•	•		•	
		60			•		•	•			
Dinonylphthalat TR	C ₂₆ H ₄₂ O ₄	20		•	•	•	•	•		•	
	25 .2 .	30					•	•			
Dioctylphthalat TR	C ₂₄ H ₃₈ O ₄	20	0					•			
		40	0					•	•		
		60	•	<u> </u>				•			
Dioxan TR	C ₄ H ₈ O ₂	20	•				•			•	1,03
		40	•	0		•	•		•	•	
		60	•	•	•		•			•	
DMF TR	C ₃ H ₇ NO	20		•	•	•	•			•	0,95
		40		•			•				
		60	•	•	•	•	•	•	•	•	
DMP TR	C ₆ H ₄ (COOCH ₃) ₂	20		•	•	•	•	•	•	•	
		40					•	•			
		60	•	•	•	•	•	•	•	•	
Dyethylamin 10 %	C ₄ H ₁₁ N	20	•		•	•	•	•	•	•	0,70
Eisen-II-Chlorid 10 %	FeCI ₂ +H ₂ 0	20	•	•	•	•	•	•	•	•	1,09
		40	•	•	0	•	•	•	•	•	
Ciara II Chiraid 5000	5	60	•	•		•	•	•	•	•	
Eisen-II-Chlorid 50 %	FeCl ₂ +H ₂ 0	20	•	•	•	•	•	•	•	•	
		40	•	•	0	•	•	•	•	•	
Circa II Nitrat TO		60	•	•	•	•	•	•	•	•	
Eisen-II-Nitrat TR	Fe(NO ₃) ₂	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
Eisen-II-Sulfat 20 %	FeSO ₄	60	•	•	•	•	•	•	•	•	

Bezeichnung / Formel		Temperatur °C	ЬР	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Eisen-II-Sulfat 20 %	FeSO ₄	40	•	•	•	-10	•		•	•	
	*	60			•	•					
Eisen-III-Chlorid 50 %	FeCI ₃ +H ₂ 0	20	•		•	•					1,55
		40			•	•		•	•	•	
		60		•	•	•					
Eisen-III-Sulfat 50 %	Fe ₂ (SO ₄) ₃	20	•		•	•		•	•		1,61
		40			•	•		•			
		60	•		•		•		•	•	
Eisengallustinte H		20	•		•		•	•	•	•	1,00
Eisenvitriol 20 %	FeSO ₄	20	•	•	•	•	•	•	•	•	1,21
		40 60	•	•	•	•	•	•	•	•	
Eisessig 10 %	CH₃COOH	20	•	•	-		•		•	•	
C13C331g 10 /0	C113C0011	40			•	•	•		•	•	
		60	•	•	•	•	•	0	•	•	
Eisessig 25 %	CH₃COOH	20	•		•	•	•		•		
		40					•	0			
		60					•	•			
Eisessig 50 %	CH₃COOH	20					•	0			
		40			•		•	0			
		60	•	•	•	•	•	•	•	•	
Eisessig 80 %	CH ₃ COOH	20			•		•	0	•		
		40	•		•	•	•	•	•		
		60	0	•	•	•	•	•	•	•	
Eisessig 100 %	CH₃COOH	20	0	•	•	•	•	•	•	•	1,05
		40 60	•	•	•	•	•	•	•	•	
Epichlorhydrin	H,C-O-CH-CH,CI	20	•	•	•	•	•	•	•	•	
Epichiornyarin	H ₂ C-O-CH-CH ₂ CI	40	•		•						
		60	•			•	•	•			
Erdől		20	•		•	•		•	•	•	-
		40		•	•			•	•	•	
		60	•		•	•		•	•		
Essig H		20				•	•				
		40					•		•		
		60	•	•	•	•	•	•	•		
Essigsäure 10 %	CH₃COOH	20	•	•	•	•	0		•	•	
		40		•	•	•	•				
		60	•	•			•	<u> </u>	•	•	
Essigsäure 25 %	CH₃COOH	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
		60	•	•	•	•	•	•	•	•	
Essigsäure 50 %	CH₃C00H	20			•	•	•	•	•	•	

16 Stand: 05/2020

Essigsaure 50 %	SCHMITT Bezeichnung/Formel		Temperatur °C	4	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Essigsaure 100%	Essigsäure 50 %	CH₃C00H		•				•	<u> </u>		•	
Essigsaurenhydrid TR (H ₁ CO) ₁ CO) ₂ CO (H ₂ CO) ₃ CO (H ₃ CO) ₄ CO (H ₃ CO) (H ₃ CO			60			•		•	•			
Essigsaure 100% Essigsaure anhydrid TR (EH_COO), 100	Essigsäure 80 %	CH₃COOH	20	•		•	•	•	•			
Essigsaure 100%			40			•		•	•			
Essigsaureanhydrid TR			60	•		•		•	•			
Essigsaureannydrid TR (CH ₂ CO) ₂ O (CO ₂ O) (CH ₂ CO) ₂ O (CH ₂ CO) (CO ₂ O) (CH ₂ CO) (CO ₂ O) (Essigsäure 100 %	CH₃COOH	20	•		•	•	•	•			1,05
Essigsaureanhydrid TR (CH,CO),CP			40	•	•	•	•	•	•	•	•	
40			60	0	<u> </u>	•	•	•	•	•	•	
Essigsaureenthylester TR C	Essigsäureanhydrid TR	(CH ₃ CO) ₂ O	20	0	0			0	0			1,09
Essigsaureuthylester TR C_H_1, O_C C_H_2 20 0 0 0 0 0 0 0 0			40	0	•			•	•			
Essigsaureenthylester TR Hi_C-COOC,H 40			60	<u> </u>	•	•		•	•	•	•	
Essigsauremethylester 100% CH ₃ CO ₂ CH ₃ 40			20									0,88
Eshanal 40% CH ₃ CO ₂ CH ₃ 60	Essigsäureethylester TR	H ₃ C-COOC ₂ H ₅		<u> </u>				•				0,90
Essigniar menthylester 100% Ethanal 40% Ethanal 40% Ethanal TR												
Ethanal 40%												
Ethanal 40% CH ₃ ·CH ₀ Ethanal TR CH ₃ ·CH ₀ Ethandicarbonsaure 50% C ₄ H ₃ O ₄ Ethandisaure 10% C(O ₂ H) ₂ Ethandisaure GL CH ₃ ·CH ₂ ·OH Ethandisaure GL CH ₃ ·CH Ethandisaure GL CH Ethandisaure GL Ethandisaure GL CH Ethandisaure GL Ethandis	Essigsäuremethylester 100 %	CH ₃ CO ₂ CH ₃						•				0,93
Ethanal 40% CH ₃ CH0 20 0								•				
Ethanal TR CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -												
Ethanal TR CH ₃ -CHO 20 40 40 40 40 40 40 40 40 40 40 40 40 40	Ethanal 40 %	CH ₃ -CHO										
Ethandicarbonsäure 50% C_4H_0Q_4 20												
Ethandicarbonsäure 50% C ₄ H ₆ O ₄ 40 60 60 60 60 60 60 60 60 60 60 60 60 60												
Ethandisaure 50% C4H8O4 40	Ethanal IR	CH ₃ -CHO										0,79
Ethandisăure 10% (CO2H)2 40	C4b 4'b	511.0										1.00
Ethandisăure 10% (CO ₂ H) ₂ 40	Ethandicarbonsaure 50 %	C ₄ H ₆ U ₄										1,06
Ethandisăure 10% (CO ₂ H) ₂ 40												
Ethandisäure GL (CO ₂ H) ₂ 20 40 40 60 60 60 60 60 60 60 60 60 60 60 60 60	Sthandisäuro 10%	(CO H)										
Ethandisäure GL (CO2H)2 20 40 60 60 60 60 60 60 60 60 60 60 60 60 60	Ctildiluisdule 10 %	(CO ₂ H) ₂										
Ethandisäure GL (CO2H)2 40 60 60 60 60 60 60 60 60 60												
Ethanol TR CH ₃ -CH ₂ -OH 60 60 60 60 60 60 60 60 60 6	Ethandisäure Gl	(CO H)										1,65
Ethanol TR CH ₃ -CH ₂ -OH 40 60 60 60 60 60 60 60 60 60	Cananaisaure de	(60211)2										1,03
Ethanol TR CH ₃ -CH ₂ -OH 40 60 60 CH Ether TR (C ₂ H ₃) ₂ O 20 CH Etherische Öle Ethylacetat H ₃ C-COOC ₂ H ₅ 60 CH CH CH CH CH CH CH CH CH C												
40	Ethanol TR	CH -CH -OH										0,79
Ether TR (C ₂ H ₅) ₂ O 2O • • • • • • • • • • • • • • • • • •	Calanor III	C113 C112 O11										0,73
Ether TR (C2Hs)20 20 60												
Etherische Öle 20	Ether TR	(C ₂ H _c) ₂ O										0,71
40		(-25/2										
Ethylacetat H ₃ C-C00C ₂ H ₅ 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
Ethylacetat												
40 • • • • • • • • • • •	Ethylacetat	H,C-COOC,H,										0,90
60 • • • • •		3 2 5										
CHIPTORKUNUT IN CHIPTURE ZU W W W W W W W W W W W W W W W W W W	Ethylalkohol TR	CH ₃ -CH ₂ -OH	20	•	•	•	•	•		•	•	0,79

SCHMITT		Temperatur °C		PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	Σ	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel		ရ ပ	Р		,		FKM				Did kg/
Ethylalkohol TR	CH ₃ -CH ₂ -OH	40			•	•	•		•	•	
		60	•	•	•	•			•	•	
Ethylbenzol TR	$C_6H_5-C_2H_5$	20	0	•	•	•	<u> </u>	•	•	•	0,87
		40	•	•	•		•	•	•	•	
		60	•	•	•				•	•	
Ethylchloracetat	CIH ₂ C-CO-OC ₂ H ₅	20	•	0	0	•	•	•	•	•	
		40	•	0		•	•	•	•	•	
		60	•							•	
Ethylchlorid TR	C ₂ H ₅ CI	20	•	•	•				•	•	0,92
Ethylenbromid TR	CH ₂ Br-CH ₂ Br	20	•	0	•	•	•	0	•	•	2,18
		40	•	0	•	•	•		•	•	
		60	•	<u> </u>	•				•	•	
Ethylenchlorhydrin TR	CIH ₂ C-CH ₂ OH	20	•	•	•	•	•	0	•	•	1,20
		40	•	0	•	•	•	0	•	•	
		60	•		•				•	•	
Ethylenchlorid	H ₃ C-CHCl ₂	20	0	•	•	•	•	0	•	•	1,20
		40	•	•	•	•	•	•	•	•	
CH L II TO		60	•	•	•	•		•	•	•	0.00
Ethylendiamin TR	H ₂ N-CH ₂ -CH ₂ -NH ₂	20	•	•	•	•	0	•	•	•	0,98
		40	•	•	•	•		•	•	•	
Cthulandikarhanaäura 25 %	611.0	60	•	•	•	•	•	•	•	•	
Ethylendikarbonsäure 35 %	C ₄ H ₄ O ₄	20 40								•	
Ethylendikarbonsäure GL	C H O	20	•					•			
etilylellaikarbolisaare ac	C ₄ H ₄ O ₄	40						•	•	•	
		60									
E+hylonglykol TD	C H O	20	•								1,11
Ethylenglykol TR	$C_2H_6O_2$	40									1,11
		60					•		•		
Ethylether TR	(C ₂ H ₅) ₂ 0	20	•	•	•	•	•		•	•	0,71
Ethylfluid TR	Pb(C ₂ H ₅) ₄	20	•		•		•		•	•	1,66
Ethylglykol TR	C ₂ H ₅ -O-CH ₂ -HC ₂ OH	20	•	•	•	•	•	•	•	•	0,93
Ctilyigiykoi iik	C ₂ 11 ₅ O C11 ₂ 11C ₂ 011	40	•	•	•	•	•		•	•	0,55
		60	•	•		•	•	•	•	•	
Ferricyankalium 10 %	K ₄ Fe(CN) ₆	20		•	•	-	•		•	•	
r criteyankanam 10 %	K ₄ i C(Civ) ₆	40	•	•	•	•				•	
		60								•	
Ferricyankalium 20%	K ₄ Fe(CN) ₆	20		•	•		•		•	•	1,11
	41 6(6.11)6	40							•		-/
		60		•	•		•		•		
Ferricyankalium GL	K ₄ Fe(CN) ₆	20					•		•		
	4. =(=76										
		40									

S SCHMITT		Temperatur °C		PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	Σ	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel		၂၈ ပ	Р		1.4 1.4	Ha 2.4	FKM				Dic kg/
Ferro TR	Fe(NO ₃) ₂	20	•		•	•		•			
		40	•	•	•	•	•	•	•	•	
		60	•	•	•	•	•	•		•	
Ferrochlorid 10 %	FeCl ₂ +H ₂ 0	20	•	•	•	•	•	•	•	•	1,09
		40	•	•		•	•	•	•	•	
Correctionid FO 0/	C-C 111.0	60	•	•		•	•	•	•	•	
Ferrochlorid 50 %	FeCl ₂ +H ₂ 0	20 40	•	•		•	•	•	•		
		60	•	•	<u> </u>	•	•	•	•		
Ferrocyankalium 10 %	K ₃ Fe(CN) ₆	20	•				•	•	-	•	
Terrocyankanum 10 %	K ₃ I e(CN) ₆	40									
		60								•	
Ferrocyankalium 16 %	K ₃ Fe(CN) ₆	20									1,11
Terrocyaniani 10 %	N ₃ 1 C(C14) ₆	40	•		•	•	•	•		•	
		60	•		•	•	•	•		•	
Ferrocyankalium GL	K ₃ Fe(CN) ₆	20	•		•	•		•			
	3 . (,)6	40	•	•	•	•		•			
		60						•			
Fettsäuren 100 %	C ₁₇ H ₃₃ CO ₂ H	20	•		•			•	•		0,90
	17 33 2	40	<u> </u>	•	•	•		•		•	
		60	0					•			
Fichtennadelöl		20						•			
		40					0	•			
		60					•	•			
Fluorammon 14 %	NH ₄ F+H ₂ O	20			0						
		40			0						
		60			•			•			
Fluorkieselsäure 32 %	H ₂ SiF ₆	20			•				•		1,17
		40	•	•	•	0		0	•	•	
		60			•	0		•			
Fluorwasserstoffsäure 40 %	HF	20			•	<u> </u>		•			1,06
		40			•	0		•			
		60	0		•	0	<u> </u>	•			
Fluorwasserstoffsäure 60 %	HF	20			•	0		0		•	
Fluorwasserstoffsäure 70 %	HF	20	<u> </u>		•	0	<u> </u>	0			1,23
		40	<u> </u>		•	•	<u> </u>	•			
		60	0	0	•	•	0	•	•	•	
Flußsäure 40 %	HF	20		•	•	•	•	0	•	•	1,06
		40	•	•	•	•	•	•	•	•	
		60	0	•	•	•	0	•	•	•	
Flußsäure 60 %	HF	20	•	•	•	•	•	0	•	•	
Flußsäure 70 %	HF	20	0		•	0	0	0			1,23
		40			•						

Bezeichnung / Formel		Temperatur °C	ЬР	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Flußsäure 70 %	HF	60	<u> </u>	0	•		0	•	•	•	
Formaldehyd 10 %	CH ₂ 0+H ₂ 0	20	•		•	•	•		•	•	
	2 2	40				•		•	•		
		60			•	•	•	•	•	•	
Formaldehyd 35 %	CH ₂ 0+H ₂ 0	20			•	•					1,10
Formaldehyd 40 %	CH ₂ 0+H ₂ 0	20									
Formalin 10 %	CH ₂ 0+H ₂ 0	20								•	
		40				•			•		
		60									
Formalin 35 %	CH ₂ 0+H ₂ 0	20									1,10
Formalin 40 %	CH ₂ 0+H ₂ 0	20									
Formamid 100 %	HCONH ₂	20					0				
		40					•				
		60			•		•				
Freon 12 TR	CF ₂ CI ₂	20	•		•	•	<u> </u>	0	•		1,32
Fruchtsäfte H		20									
		40	•			•		•	•	•	
		60	•			•		•	•	•	_
Furfurylalkohol TR	$C_5H_6O_2$	20					0				1,13
		40	•				•				
		60	•	<u> </u>		•	•				
Gallusgerbsäure 50 %	$C_2O_6H_6$	20			•	•					
		40	•		•	•				•	
		60			•	•					
Gallussäure 50 %	C ₆ H ₂ (OH) ₃ CO ₂ H	20	•		•	•	•		•	•	
Gerbextrakte pflanzlich H		20	•	•	•	•		•	•	•	
		40			•	•		•	•	•	
		60	<u> </u>		•	•	•	<u> </u>	•	•	
Gerbsäure 50 %	$C_2O_6H_6$	20			•						
		40			•	•					
		60	•	•	•	•		•	•	•	
Glasätztinte 50 %	(NH ₄)HF ₂	20	•	•	<u> </u>	0		•	•	•	
		40	•		•	0	0	•	•	•	
		60	•		•	<u> </u>	0	•	•	•	
Glaubersalz 50 %	Na ₂ SO ₄	20	•	•	•	•	•	•	•	•	1,46
		40	•	•	•	•	•	•	•	•	
		60	•	•	•		•	•	•	•	
Gluconsäure	$C_6H_{12}O_7$	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
		60	•	•	•	•	•	•	•	•	
Glucose GL	$C_6H_{12}O_6$	20	•	•	•	•		•	•	•	1,13

20 Stand: 05/2020

20 40

60

Parentriff To No.	Dichte kg/dm³
Harnstoff 10 % Harnstoff 16 w Harn	
Glykol TR	1,26
Glykols TR C,H,O, 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Harmstorffösung 33%	
Figure 10 materials 10 materia	1,11
Clykolsaure 37 %	
Glykolsaure 70%	
Horistoff 10%	
Glykose TR C, H ₁ , θ ₂ (0) 20 0	
Harnstoff 10%	
Harnstoff 10%	1,26
Harnstoff 10%	
Harnstoff 33%	
Harnstofflösung 10% CH ₄ N ₂ O 60 60 60 60 60 60 60 60 60 60 60 60 60	
Harnstofflösung 10%	
Harnstofflösung 33% Heizöl H Heizöl H Beptan TR C, H ₁₆ C, H ₁₂ C, H ₁₂ C, H ₂ Bexamethylentetramin 10% C, H ₂ C, H ₃ C, H ₂ C, H ₃ C,	
Haristofficiang 33% Heizöl H Heizöl H Heptan TR CyH16 60	
Heptan TR	
Heptan TR C ₂ H ₁₆ C ₃ C ₄ H ₁₂ C ₆ H ₁₂ C ₇ C ₄ C ₇	
Heptan TR	
Hexamin 10% C ₂ H ₁₆ 20	
Hexahydrobenzol TR C ₆ H ₁₂ 40 60 60 60 60 60 60 60 60 60 60 60 60 60	
Hexahydrobenzol TR C ₆ H ₁₂ 40	0,6
Hexahydrobenzol TR	
Hexalin TR C ₆ H ₁₂ O 40 40 40 40 40 40 40 40 40 40 40 40 40	0.7
Hexalin TR C ₆ H ₁₂ O 20 40 40 40 40 40 40 40 40 40 40 40 40 40	0,7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Hexamin 10% $(CH_2)_6N_4$ 20 0 0 0 0 40 0 0 0 0 0 0 60 0 0 0 0 0 0 40 0 0 0 0 0 0 Hexandisäure GL $C_7H_{12}O_2$ 20 0 0 0 0 0	
Hexan TR C ₆ H ₁₄ 20 40 60 60 60 60 60 60 60 60 60 60 60 60 60	
Hexan TR C ₆ H ₁₄ 20 40 60 60 60 60 60 60 60 60 60 60 60 60 60	
Hexandisăure GL C ₇ H ₁₂ O ₂ 20	
Hexandisäure GL C ₂ H ₁₂ O ₂ 20 • • • • • • • • • • • • • • • • • •	
Hexandisäure GL C ₇ H ₁₂ O ₂ 20 • • • • • • • • • • • • • • • • • •	
40 • • • • •	
	0,8
50 0 0 0 0	
60 • • • • •	

		Temperatur °C		PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	Σ	EPDM	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel		မ်	Ь		1.4 1.4	Ha 2.4	FKM				-
Hexylalkohol	C ₆ H ₁₃ OH	20	•	•	•	•	•	•	•	•	0,82
Hirschhornsalz 25 %	$(NH_4)_2CO_3+H_2O$	20			•	•		•	•	•	
		40	•	•	•	•	•	•	•	•	
		60	•	•	•	•	•	•	•	•	
Höllenstein 8 %	AgNO ₃	20	•	•	•	•	•	•	•	•	1,07
		40	•	•	•	•	•	•	•	•	
Hudragin TD	L NI NIL	60 20	•	•	•	•	•	•	•	•	1,08
Hydrazin TR	H ₂ N-NH ₂	40	•		•			•			1,08
		60	•		•			•			
Hydrogenbromidlösung 10 %	HBr + H ₂ 0	20			<u> </u>			_	•	•	1,07
Trydrogenbronndrosdrig 10 %	1161 · 1120	40	•		•			•		•	1,07
		60				•				•	
Hydrogenbromidlösung 48 %	HBr + H ₂ 0	20	•	•							1,44
Try and a second second second		40		•	•	•					
		60	•		•	•	•	•	•	•	
Hydroxybenzol 100 %	C ₆ H ₆ O	20	•	•	•	•	•	•	•	•	
	0 0	40			•	•		0	•	•	
		60	•		•	•	•	0	•	•	
Hydroxybenzol 50 %	C ₆ H ₆ O	20				•			•		
		40						•			
		60						0			
Hydroxybenzol 90 %	C_6H_6O	20						•			
		40				•	<u> </u>	•			
		60					<u> </u>	•			
Hydroxybernsteinsäure 50 %	HOOC-CH ₂ -CHOH-COOH	20			•						
		40									
		60			•	•	•		•	•	
Hydroxyessigsäure 37 %	C ₂ H ₄ O ₃	20				•					
Hydroxyessigsäure 70 %	C ₂ H ₄ O ₃	20			•	•		•	•		
		40	<u> </u>	0			0	0			
		60	•	0		•	0	•			
Isobutanol 100 %	$C_4H_{10}O$	20				•					0,81
		40			•	•					
		60			•	•			•		
Isobutylalkohol 100 %	$C_4H_{10}O$	20					•			•	0,81
		40									
		60	•	•	•	•	•		•	•	
Isocyanat		20	•	•	•	•	•	•	•	•	
Isooctan TR	C ₈ H ₁₈	20	•	•	•	•	•	•	•	•	
Isooctanol TR	C ₄ H ₉ -CH(C ₂ H ₅)	20	•	•	•	•	•	•	•	•	0,83
Isopropanol TR	C₃H ₈ O	20		•	•	•		0			
		40									

Bezeichnung / Formel		Temperatur ℃	PP.	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	ΑXΜ	EPDM	PTFE/FEP	FFKM	Dichte kg/dm³
Isopropanol TR	C ₃ H ₈ O	60	•	•		•	•	•	•	•	
Isopropylacetat	C ₅ H ₁₀ O ₂	20	0		•		•	•	•	•	0.87
Isopropylether TR	C ₆ H ₁₄ O	20	•			•	•	•			0,73
		40	0	0			•	•			
		60	•	<u> </u>	•	•	•	•	•	•	
Jodoform	CHJ ₃	20						0			
		40	•	•	•	•		<u> </u>	•	•	
		60	•	•	•	•		•	•	•	
Jodtinktur H		20	•	•	0	•	•	•	•	0	
		40	•	•	<u> </u>	•	•	•	•	0	
		60	•	•			•	•	•	<u> </u>	
Jodwasserstoffsäure TR	HJ	20	•	•		0	•	•	•	•	
		60	•	•	•	•	•	•	•	•	
Kalibleichlauge 15 %	KCIO	20	•	•			•	•	•	•	
Kalibieicillauge 15 %	KCIO	40	•					•	•		
		60	•					•		•	
Kalilauge 20 %	КОН	20	•	•	•	•	•	•	•	•	1,19
Kamaage 20 //	KOTT	40			•	•	•	•		•	1,13
		60	•		•	•	•	•		•	
Kalilauge 30 %	КОН	20	•	•	•	•	•		•	•	1,29
, and the second		40					•	0			
		60	•		•	•	•	0	•	•	
Kalilauge 60 %	КОН	20				•	•				1,63
		40					•				
		60				•	•			•	
Kalisalpeter 10 %	KNO ₃	20									
		40									
		60									
Kalisalpeter 24 %	KNO ₃	20									1,17
		40									
		60									
Kalium-Aluminiumsulfat 50 %	KAI(SO ₄)·2H ₂ O	20				•					
		40	•		•	•		•	•	•	
		60	•			•		•	•		
Kaliumbichromat 40 %	K ₂ Cr2O ₇	20			•	•	•	•	•	•	
Kaliumbromat GL	KBrO ₃ +H ₂ O	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
		60	•	•	•	•	•	•	•	•	
Kaliumbromid 10 %	KBr + H ₂ 0	20	•	•	•	•	•	•	•	•	1,37
		40	•	•	•	•	•	•	•	•	
		60	•	•	0	•	•	•	•	•	
Kaliumbromid GL	KBr + H ₂ 0	20				•				•	

Stand: 05/2020 23

SCHMITT Bezeichnung/Formel		Temperatur °C	Ь	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Kaliumbromid GL	KBr + H ₂ O	40	•	•	•	•	•		•		
		60			•	•					
Kaliumcarbonat GL	K2CO ₃	20									
		40			•	•					
		60									
Kaliumchlorat 50 %	KCIO ₃	20	•	•	•	•		•	•	•	
		40									
		60		•	<u> </u>	•	•		•		
Kaliumchlorid 10 %	KCI	20		•	<u> </u>	•			•	•	
		40		•	<u> </u>	•	•		•		
		60			<u> </u>	<u> </u>					
Kaliumchlorid GL	KCI	20	•	•	<u> </u>	-	-	•	•	•	1,17
		40	•	•	<u> </u>	-	-	•	•	•	
		60					•	_		•	
Kaliumcyanid 50 %	KCN	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	0	•	•	•	
W II	I/CN	60	•	•	•	•	•	•	•	•	4.24
Kaliumcyanid GL	KCN	20	•	•	•	•	•	•	•	•	1,31
		40 60	•	•	•	•	•	•	•	•	
Kaliumdichromat 40 %	K ₂ Cr2O ₇	20	•		•	-	•		•	•	
Kaliumferricyanid 10%	κ ₂ C12O ₇ Κ ₄ Fe(CN) ₆	20	•	_	-				•	•	
Kanumerneyama 10 %	K ₄ I e(CN) ₆	40									
		60			•	•					
Kaliumferricyanid 20 %	K ₄ Fe(CN) ₆	20			•	•			•	•	1,11
	14. ((11)6	40		•	•	•		•		•	
		60	•	•	•	•		•	•	•	
Kaliumferricyanid GL	K ₄ Fe(CN) ₆	20	•	•	•	•	•		•	•	
·	4 \ 10	40	•	•	•	•	•		•	•	
		60			•						
Kaliumferrocyanid 10 %	K ₃ Fe(CN) ₆	20	•	•	•	•	•		•		
	, , , , , , , , , , , , , , , , , , ,	40				•			•		
		60									
Kaliumferrocyanid 16 %	K₃Fe(CN) ₆	20									1,11
		40									
		60				•					
Kaliumferrocyanid GL	K ₃ Fe(CN) ₆	20				•					
		40									
		60				•	•				
Kaliumhydroxid 20 %	кон	20	•		•	•	•	•	•	•	1,19
		40			•	•	•	•			
		60					•	<u> </u>			
Kaliumhydroxid 30 %	КОН	20					•				1,29

Bezeichnung / Formel		Temperatur °C	Ь	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Kaliumhydroxid 30 %	КОН	40	•	•	•	•	•	0	•	•	
		60					•	0			
	КОН	20	•		•	•	•	•	•	•	1,63
Kaliumhydroxid 60 %		40					•				
		60	•	•	•	•	•	•	•	•	
Kaliumhypochlorit 15 %	KCI0	20	<u> </u>		<u> </u>	•		•	•	•	
		40	<u> </u>	•		•	•	<u> </u>	•	•	
		60					•	•			
Kaliumjodid 50 %	KJ	20	•	•	•	•	•	•	•	•	1,55
		40	•	•	•	•	•	•	•	•	
W-1;;-4;4 CI		60	•	•	•	•	•	•	•	•	
Kaliumjodid GL	KJ	40	•	•	•	•	•	•	•	•	
		60			•						
Kaliumnitrat 10 %	KNO ₃	20	•	•	•		•	•	•	•	
Rundillillede 10 70	KNO ₃	40			•	•	•				
		60	•		•	•	•	•		•	
Kaliumnitrat 24 %	KNO,	20	•	•	•	•	•	•	•	•	1,17
	· .	40			•						
		60				•					
Kaliumoxalat	K ₂ (CO ₂) ₂	20	•								
		40				•				•	
		60									
Kaliumpermanganat 6 %	KMnO ₄	20	•	•							1,04
		40									
		60	•		•				•	•	
Kaliumpermanganat 18 %	KMnO ₄	20									
		40	•	•	•	•	•	•	•	•	
Kaliumsulfat 10 %	K ₂ SO ₄	20									1,08
		40	•		•	•		•	•	•	
		60	•	•	•	•	•	•	•	•	
Kalkmilch 15 %	Ca(OH) ₂	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
		60	•	•	•	•	•		•	•	
Kampfer	C ₁₀ H ₁₆ O	20	•	•	•	•	0	0	•	•	
		40	•	•	•	•	0	0	•	•	
Karbolsäure 100 %	C ₆ H ₆ O	20	•	•	•	•	•	•	•	•	
Naibuisaure 100 70	C ₆ ⊓ ₆ U	40	•				•	•			
		60	•			•	•	•			
Karbolsäure 50 %	C ₆ H ₆ O	20	•		•	•	•			•	
	C ₆ 11 ₆ 0	40	•		•	•	•	•		•	
			_		_	_	_	_	_		

SCHMITT		Temperatur °C		ų.	Edelstahl 1.4571	Hastelloy C4 2.4610	_	Σ	PTFE/FEP	Σ	te
Bezeichnung / Formel		Tem ပ	8	PVDF	Edel 1.45	Has 1 2.46	FKM	EPDM	PTF	FFKM	Dichte
Karbolsäure 90 %	C ₆ H ₆ O	20			•	•		•	•		
		40					0	•			
		60			•	•	•	•	•		_
Kastoröl H		20									0,9
		40				•					
		60	•	•	•	•	•	_	•	•	
Kerosene TR		20	•	•	•	•	•	<u> </u>	•	•	0,
		40	•	•	•	•	•	•	•	•	
		60	•	•	•		•		•	•	
Kerosin TR		20		•	•	•		<u> </u>	•	•	0,
		40	•	•	•	-	•	•	•	•	
		60		•	•	•	•		•	•	
Kiefernnadelöl		20	•	•	•	•	•		•	•	
		40	•	•	•	•	0	•	•	•	
		60	•	•			•		•	•	
Kieselflußsäure 32 %	H ₂ SiF ₆	20	•	•	•	•	•	•	•	•	1,
		40	•	•	•	<u> </u>	•	0	•	•	
	511011	60	•	•	•		•		•	•	
Kieselsäure TR	Si(OH) ₄	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•		•	•	
		60	•	•	•	•	•	•	•	•	
Kochsalz 20 %	NaCl	20	•	•	0	•	•	•	•	•	
		40	•	•	0	•	•	•	•	•	
		60		•			•		•	•	
Kohlenstoffdisulfid TR	CS ₂	20		•			•	•	•	•	1,
	CS ₂	40		•	•	•	•	•	•	•	
()	CS ₂	60		•						•	
Kohlenstofftetrachlorid TR	CCI ₄	20	0	•	•	•	•	•	•	•	1,
		40	•	•	•	•	•	•	•	•	
· · ·	2050	60	•	•	•	•	•		•	•	
Königswasser	3HCI+HNO ₃	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
/sfar ablasid 100/	CCl	60							•	•	
Kupfer-I-chlorid 10 %	CuCl	20	•	•	•	•	•	•	•	•	
		60							•	•	
Cupfer-II-chlorid 20 %	CuCl	20				•	•		•	•	1,
Nupret-II-CHIOHU ZU 70	CuCl ₂	40								•	Ι,
		60			•						
Kupferacetat 50%	(CH ₃ CO ₂) ₂ Cu	20				•	•		•	•	
Aupreidcetat 30 /0	(cn ₃ co ₂ / ₂ cu	40									
		60									
Kupferchlorür 20 %	CuCl	20	•						•	•	

Temperatur ℃

40

CuCl

Ы

Hastelloy C4 2.4610

Edelstahl 1.4571

Bezeichnung / Formel

Kupferchlorür 20 %

Magnesiumsulfat 10 %

Stand: 05/2020 27

60

20

MgSO₄

SCHMITT		Temperatur °C		Œ.	Edelstahl 1.4571	Hastelloy C4 2.4610		Σ	PTFE/FEP	Σ	ţe,
Bezeichnung / Formel		را ال	Ъ	PVDF	Edel 1.45	Has : 2.46	FKM	EPDM	PTF	FFKM	Dichte
Magnesiumsulfat 10 %	MgSO ₄	60			•				•		
Magnesiumsulfat GL	MgSO ₄	20									1,2
		40									
		60	•	•	•	•		•	•		
Maisöl TR		20		•	•	•	•		•	•	
		40			•	•		<u> </u>			
		60	<u> </u>	•	•	•	•	•	•	•	_
Maleinsäure 35 %	$C_4H_4O_4$	20	•	•	•	•	•		•	•	
		40		•	•	•			•		
Maleinsäure GL	$C_4H_4O_4$	20	•	•	•	•	•		•	•	
		40	•	•	•	•	•	•	•	•	
		60	•	•	•	•	•		•	•	
Mangan-II-chlorid 20%	MnCl ₂	20	•	•	•	•	•	•	•	•	1,
		40	•	•	•	•	•	•	•	•	
Manganchlorür 20 %	MnCl ₂	20	•	•		•	•	•	•	•	1,
1anganchlorür 20 %	MnCl ₂	40			•	•					Ι,
	MnCl ₂	60			•						
 Meerwasser	Tinci ₂	20					•	•	•	•	
ice wasser		40		•		•	•			•	
		60	•			•				•	
 Methanol TR	CH ₂ OH	20	•	•	•	•		•	•	•	-
	3	40					0				
		60			•		<u> </u>	<u> </u>	•		
Methylacetat 100 %	CH ₃ CO ₂ CH ₃	20		•	•	•	•	•	•		0,
		40		0			•	•			
		60		•			•	•			
Methylalkohol TR	CH₃OH	20		•	•	•	0				
		40					<u> </u>				
		60					0	0			
Methylbenzol	C ₇ H ₈	20	<u> </u>	•		•	<u> </u>	0			0,
		40	<u> </u>				<u> </u>	•			
		60	<u> </u>			•	<u> </u>	•			
Methylcellosolve	$(CH_2)_2OHOCH_3$	20									0,
		40					•			•	
		60			•	•			•		
Methylcyanid TR	CH ₃ -CN	20		0			0	0	•	•	0,
		40		•			0	•	•	•	
		60	•	•	•	•	0	•	•	•	
Methylenchlorid	CH ₂ CI ₂	20	0	0	•	•	0	0	•	•	1,
		40	0	<u> </u>	•	•	0	•	•	•	
Methylester 100 %	CH ₃ CO ₂ CH ₃	20									0,

Bezeichnung / Formel		Temperatur °C	<u>4</u>	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	EPDM	PTFE/FEP	FFKM	Dichte kg/dm³
Methylester 100 %	CH ₃ CO ₂ CH ₃	60	•	•	•	•	•	•	•	•	
Methylethylketon (MEK) TR	C ₄ H ₈ O	20	•	•	•	•	•		•		0,81
		40	•	•			•	•			
		60	0	•			•	0			
Methylglykol	(CH ₂) ₂ OHOCH ₃	20	•		•	•			•		0,98
		40									
		60								•	
Methylisobutylketon (MIBK)	C ₆ H ₁₁ O	20	•				0	0			
Methylpentanon	C ₆ H ₁₁ O	20	•		•		0	0	•		
Methylschwefelsäure 50 %	H ₂ SO ₄ -CH ₂	20	•		0	0	0				
		40	<u> </u>		•	<u> </u>	0				
		60	•		•	•	•	0		•	
Methylschwefelsäure TR	H ₂ SO ₄ -CH ₂	20	•		•	•	0				
		40	•		•	0	0				
		60	•		•	•	•	•	•		
Milch		20			•	•			•		
Milchsäure 10 %	$C_3H_6O_3$	20			•	•	•				
		40				•	•				
		60				•					
Milchsäure 90 %	$C_3H_6O_3$	20									
		40	•	•	0	•		•	•	•	
		60	•	<u> </u>		•	•	<u> </u>	•	•	
Mineralöle		20				•		•			
		40			•	•		•			
		60	•	•	•	•	•	•	•	•	
Mineralwasser		20	•	•	•	•		•	•	•	
		40	•	•	•	•		•		•	
		60	•	•	•	•	•	•	•	•	
Mirbanöl TR	$C_6H_5NO_2$	20	•		•	•	0	•	•	•	1,21
		40	<u> </u>	•	•	•	0	•			
		60	<u> </u>	•	•	•	0		•	•	
Monochloressigsäure 85 %	C ₂ H ₃ CIO ₂	20		•	•	•	•	•	•	•	1,36
		40	•	•	•	0	•	•	•	•	
		60	•		•	•		•	•	•	
Monochloressigsäure 98 %	C ₂ H ₃ CIO ₂	20	•	•	•	•	•	•	•	•	
		40	•	•	•	0	•	•	•	•	
		60	•	•	•	<u> </u>	•	•	•	•	
Nagellackentferner 10 %	CH ₃ -CO-CH ₃ +H ₂ O	20	•	•	•	•	0	•	•	•	
		40	•	•	•	•	0		•	•	
		60	•	•	•	•	•	•	•	•	
Nagellackentferner TR	CH ₃ -CO-CH ₃	20	•	0	•	•	•	•	•	•	0,79
		40	•	0	•	•	•	<u> </u>	•	•	
		60	<u> </u>	•			•	•		•	

Stand: 05/2020 29

Bezeichnung / Formel		Temperatur °C	А	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Naphta		20	•	•	•	•		•	•	•	
		40						•			
		60	•		•	•		•	•	•	
Naphtensäure 100 %	$C_{17}H_{33}CO_{2}H$	20	0		•	•		•	•	•	0,90
		40	0					•			
		60			•	•		•	•	•	
Natriumacetat 10 %	CH₃COONa	20	•		•	•	•		•	•	
		40	•	•	•	•	•	•	•	•	
		60		•		•	•		•	•	
Natriumbenzoat 10 %	C ₇ H ₅ NaO ₂	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
N	5 II N 0	60	•	•	•	•	•	•	•	•	
Natriumbenzoat 36 %	C ₇ H ₅ NaO ₂	40	•	•	•	•	•	•	•	•	
		60		•	•	•	•	•	•	•	
Natriumbenzoat GL	C ₇ H ₅ NaO ₂	20									
Natifullibelizoat de	C ₇ 11 ₅ NaO ₂	40									
Natriumbicarbonat 10 %	NaHCO ₃	20		•			•	•	•	•	1,07
Natifulibicarbonat 10 //	Null CO ₃	40									1,07
atriumbichromat 10 %		60				•				•	
Natriumbichromat 10 %	Na ₂ Cr ₂ O ₇	20	•	•		•	•			•	
	2 2 /	40		•	•			•	•		
		60									
Natriumchlorat 25 %	NaCIO ₃	20	•		•	•		•			1,23
		40	•			•					
		60			0						
Natriumchlorid 20 %	NaCl	20	•		0	•					
		40			•						
		60	•		<u> </u>	0					
Natriumchlorit 5 %	NaCIO ₂	20	•		0	•			•		
		40			•	0					
		60			•	•		•	•		
Natriumdichromat 10 %	Na ₂ Cr ₂ O ₇	20									
		40									
		60	•			•					
Natriumfluorid 4 %	NaF	20	•		•	•	•		•		1,04
		40	•	•			•		•	•	
		60	•	•	<u> </u>	•	•	•	•	•	
Natriumhydroxid 10 %	NaOH	20		0	•	•					1,16
		40	•	0	•	•	•		•	•	
		60		0	•	•	0				
Jatriumhydroxid 30 %	NaOH	20									1,33

SCHMITT		Temperatur °C		PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel			<u>a</u>								
Natriumhydroxid 30 %	NaOH	60	•	0	•	•	0	•	•	•	1.50
Natriumhydroxid 50%	NaOH	40	•		•	•	•	•	•	•	1,53
		60					•			•	
Natriumhypochlorit 10 %	NaOCI	20						-	•		
Natriumhypochlorit 12,5 %	NaOCI	20	•	•		•			•		
		40				•	•			•	
Natriumhypochlorit 20 %	NaOCI	20	•	•	0	•		•	•	•	
•		40	<u> </u>		0		<u> </u>	<u> </u>			
		60	•		0	•	0	•			
Natriumhyposulfit 40 %	Na ₂ S ₂ O ₃	20	•	•		•		•			
		40						•			
		60	0					•			
Natriumnitrat 45 %	NaNO ₃	20	•			•					1,37
		40									
		60									
Natriumnitrit 50 %	NaNO ₂	20	•	•	•		•	•			
		40									
		60		•							
Natriumperchlorat 25 %	NaCIO ₄	20			0						1,18
		40			0						
		60	•	•	•	•	•		•		
Natriumphosphat 10 %	$Na_{_3}PO_{_4}$	20	•		•	•		•	•	•	
		40				•					
		60	•	•	•	•				•	
Natriumsilikat 20 %	Na ₂ SiO ₃	20	•		•	•		•	•	•	1,24
		40	•	•	•	•	•	•	•	•	
		60	•	•	•	•		•	•	•	
Natriumsulfat 50 %	Na ₂ SO ₄	20	•	•	•	•	•	•	•	•	1,46
		40	•	•	•	•	•	•	•	•	
		60	•	•	•	•	•	•	•	•	
Natriumsulfit GL	Na ₂ SO ₃	20	•	•	•	•	•	•	•	•	1,18
		40	•	•	•	•	•	•	•	•	
No. 2011	N- D 0 :10 H 0	60	•	•	•	•	•	•	•	•	1.02
Natriumtetraborat 10 %	Na ₂ B ₄ O ₇ +10 H ₂ 0	20	•	•	•	•	•	•	•	•	1,03
		40	•	•	•	•	•	•	•	•	
Natriumtetraborat GL	Na ₂ B ₄ O ₇ +10 H ₂ 0	20	•	•	•	•	•	•	•	•	
Namumtenaborat ac	Na ₂ D ₄ O ₇ *10 П ₂ 0	40								•	
		60					•				
Natriumthiosulfat 40 %	Na ₂ S ₂ O ₃	20	•	•	•	•	•	•	•	•	
Nationality 10 /0	14a ₂ 3 ₂ 0 ₃	40			•	•	•	•			
		60	•		•	•	•	·		•	
		- 50									

SCHMITT		Temperatur		PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	Σ	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel		ရ ပ	РР				FKM				Pic Kg,
Natronbleichlauge 10 %	NaOCI	20	•	•	<u> </u>	•	•	•	•	•	
Natronbleichlauge 12,5 %	NaOCI	20	•	•	<u> </u>	•			•	•	
		40	<u> </u>	•	0	•		<u> </u>	•	•	
Natronbleichlauge 20 %	NaOCI	20	•	•	0	•	•	•	•	•	
		40	0	•	0	•	0		•	•	
N-4	N-OII	60	•	•	•	•	•	•	•	•	116
Natronlauge 10 %	NaOH	20 40	•		•	•	•		•	•	1,16
		60			•						
Natronlauge 30 %	NaOH	20									1,33
Nationauge 50 %	Naori	40									
		60							•		
Natronlauge 50 %	NaOH	20			•	•			•		1,53
		40	•		•	•	•	•		•	
		60	•		0	•	•	•	•	•	
Nelkenöl		20	•	•	•	•	•	•	•	•	
		40			•		0	•			
		60	•	•	•	•	•	•			
lickelchlorid 20 %	NiCl ₂	20			•	•			•		1,22
		40			0						
		60			0						
Nickelnitrat 35 %	Ni(NO ₃) ₂	20				•			•		1,38
		40									
		60									
Nickelsulfat 10 %	NiSO ₄	20				•					1,21
		40									
		60			•	•			•		
Nikotin	$C_{10}H_{14}N_2$	20	•	•		•			•		
Nitrobenzol TR	$C_6H_5NO_2$	20			•	•	0	•		•	1,21
		40	<u> </u>				<u> </u>	•			
		60	0	•	•	•	0	•	•	•	
Nitrosesäure 10 %	HNO ₃	20									1,05
		40	0			•					
		60	<u> </u>	•	•	•		<u> </u>	•	•	
Nitrosesäure 30 %	HNO ₃	20	0		•	•		•		•	1,18
		40	0	•	•	•	•	•	•	•	
		60	•	•	0	•	•	0	•	•	
Nitrosesäure 50 %	HNO ₃	20	•	•	•	•	•	•	•	•	1,31
		40	•	•	•	•	0	•	•	•	
N:+	1010	60	•	•	•	•	0	•	•	•	
Nitrosesäure 65 %	HNO ₃	20	•	•	•	•	0	•	•	•	1,41
		40	•	•		•	0	•	•	•	
		60	•	•	<u> </u>	<u> </u>	0	•	•	•	

Bezeichnung / Formel		Temperatur °C	8	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Nitrotoluol TR	C ₆ H ₄ CH ₃ NO ₂	20	•	•	•	•	0	•	•	•	
		40					0	•			
		60	0				0	•			
Octal TR	C ₂₄ H ₃₈ O ₄	20	•	•		•		•		•	
		40	<u> </u>					•			
		60	•	<u> </u>	•	•		•			
Octan TR	C_8H_{18}	20				•					
Octansäure	CH ₃ (CH ₂) ₆ COOH	20									0,92
		40	0					0			
		60	•				0	•			
ÖI		20						•			
		40						•			
		60	•	•		•		•	•	•	
Oleinsäure TR	$C_{18}H_{34}O_2$	20						•			0,90
		40	•		•	•	0	•		•	
		60	0			•	<u> </u>	•			
Oleum	H ₂ SO ₄ +SO ₃	20	•	•		•		•			
Ölsäure TR	$C_{18}H_{34}O_{2}$	20	•			•		•		•	0,90
		40	•			•	<u> </u>	•		•	
		60	•		•	•	<u> </u>	•			
Oxalsäure 10 %	(CO ₂ H) ₂	20									
		40	•								
		60	•								
Oxalsäure GL	(CO ₂ H) ₂	20									1,65
		40	•					<u> </u>			
		60	•	<u> </u>				<u> </u>			
Oxidiessigsäure 2,2 30 %	$C_4H_6O_6$	20									
		40						0			
		60	•		•	•		0		•	
Oxidiessigsäure 2,2GL	$C_4H_6O_6$	20	•	•	•	•		•		•	
Palatinol C TR	C ₆ H ₄ (CO ₂ C ₄ H ₉) ₂	20				•	0	0			1,05
		40	•				•	•			
		60	0	0			•	•			
Paraffinöl TR	CnH₂n	20						•			0,93
		40						•			
		60						•			
Pektin		20	•			•					
Pentanol-1 TR	C ₅ H ₁₁ OH	20	•	•	•	•	•	•		•	0,82
	5 11	40	•	•	•	•	•	•	•	•	
		60	•	•	•	•	•	•	•	•	
Pentylacetat TR	CH ₃ -C00C ₅ H ₁₁	20	•	•	•	•	•	•	•	•	0,88
J	23 20025.111	40	•	•	•	•	•	•		•	2,00
		+0	_	_			_	_			

Stand: 05/2020 33

SCHMITT		Temperatur °C	۵.	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel	CIL (CIL) CI		<u>a</u>								
Pentylchlorid TR	CH ₃ (CH ₂) ₄ CI	20 40	•	•	•	•	•	•		•	0,87
		60									
Perchlorethylen TR	C ₂ CI ₄	20	•	•		•	•	•	•	•	
	-2 - 4	40	•	•	•	•	•	•	•	•	
		60	•		0			•			
Perchlorsäure 20 %	HCIO ₄	20				•					
		40				•					
		60					<u> </u>	0			
Perchlorsäure 50 %	HCIO ₄	20									1,40
		40									
		60	0				0	0			
Perchlorsäure 70 %	HCIO ₄	20									1,55
		40	•	•	•	•	•		•	•	
		60									
Perchlorsäure GL	HCIO ₄	20				•					
		40	<u> </u>	•	•	•	•	•	•	•	
		60	•	•	<u> </u>	•	•	•	•	•	
Peressigsäure TR		20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
D. I. II. TD.		60	•	•	•		•		•	•	
Petrolether TR		20 40	•	•	•	•	•		•	•	0,69
		60					•	•		•	
Petroleum TR		20		•	•	•			•	•	0,81
Tetroleum TK		40						•			0,01
		60			•	•				•	
Phenol 100 %	C ₆ H ₆ O	20	•	•	•	•	•		•	•	
	ъ 6	40	•	•	•	•	•	•	•	•	
		60	•		•	•	•	0	•	•	
Phenol 50 %	C ₆ H ₆ O	20									
		40						0			
		60						0			
Phenol 90 %	C_6H_6O	20						•			
		40					<u> </u>	•			
		60				•	<u> </u>	•			
Phenylchlorid TR	C ₆ H ₅ CI	20	0					•			1,11
		40	0	•		•	•	•		•	
		60	•			•	•	•			
Phosphorchlorid TR	POCI ₃	20			•	•	•		•		1,57
		40	0		•	•	•				
		60	0	•	•	•	•	•		•	
Phosphorsäure 30 %	H ₃ PO ₄	20	•	•	•	•	•	•	•	•	1,18

5 SCHMITT	•	Temperatur ℃		PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	Σ	EPDM	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel		၂၈ ပ	Р	_ 8	1.4	Ha 2.4	FKM	<u>a</u>	P	Æ	Dic Kg/
Phosphorsäure 30 %	H ₃ PO ₄	40	•	•	•	•					
		60	•	•	•	•	-	•	•	•	
Phosphorsäure 50 %	H ₃ PO ₄	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
		60	•	•	•	•	•	•	•	•	
Phosphorsäure 85 %	H ₃ PO ₄	20	•	•	•	•	•	•	•	•	1,69
		40 60	•	•	•	•	•	•	•	•	
Phosphorsäure 95 %	ц по	20	•	•	•	•		•		•	1,70
Pilospilorsaule 95 %	H ₃ PO ₄	40									1,70
		60	•					•			
Phosphortrichlorid TR	POCI ₂	20		•					•	•	1,57
Thosphorthemona TK	1 0013	40					•	•			
		60	•		•	•	•	•		•	
Phthalsäure 50 %	C ₆ H ₄ (COOH) ₂ +H ₂ O	20	•	•	•	•	•	•	•	•	
	6 41 72 2	40	•	•	•	•		•	•	•	
		60		•							
Phthalsäure GL	C ₆ H ₄ (COOH) ₂ +H ₂ O	20	•	•	•	•	0				1,59
	0 1 2 2	40	•	•		•	0			•	
		60					•	0			
Polyol		20	•								1,78
Pottasche GL	K2CO ₃	20									
		40									
		60				•					
Propandio TR	C ₃ H ₈ O ₂	20									1,04
		40			•						
		60	•				<u> </u>				
Propanol TR	C_3H_8O	20						•			
		40	•		•	•		•	•	•	
		60	•	•	•	•	•	<u> </u>	•		
Propanon 10 %	CH ₃ -CO-CH ₃ +H ₂ O	20					0				
		40	•	•		•	0	•			
		60	0	•		•	•	•			
Propanon TR	CH ₃ -CO-CH ₃	20	•	<u> </u>	•	•	•		•	•	0,79
		40		0	•	•	•	•		•	
		60	<u> </u>	•	•	•	•	•		•	
Propenoxid TR	C_3H_6O	20	•	•	•	•	•	•	•	•	0,83
		40	•	•	•	•	•	•	•	•	
Propionsäure 50 %	$C_3H_6O_2$	20	•	•	•	•	•	0	•	•	
		40	•	•	•	•	•	0	•	•	
		60	•	•	•	•	•	•	•	•	
Propionsäure TR	$C_3H_6O_2$	20	•	•	•	•	•	•	•	•	0,99
		40	0		•	•	•	•		•	

Bezeichnung / Formel		Temperatur °C	Ь	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Propionsäure TR	C H O	60		•	— — —		•			•	
Propylacetat	C ₃ H ₆ O ₂	20		•			•		•	•	0.87
Propylenaldehyd TR	C ₅ H ₁₀ O ₂	20	•	•		•			•		
Propylenglykol TR	C ₄ H ₈ O ₂	20			•				•		1,04
Tropylenglykol TK	C ₃ 11 ₈ O ₂	40			•					•	1,04
		60			•	•	•	•		•	
Propylenoxid TR	C ₃ H ₆ O	20	•	•	•	•	•	•	•	•	0,83
		40			•	•	•	•			
Pyranton TR	(CH ₃) ₂ C(OH)CH ₂ COCH ₃	20	•	•		•		•	•		
		40	•								
		60	•								
Pyridin TR	C_5H_5N	20	0	•		•	0				0,99
		40	<u> </u>				•	<u> </u>			
		60	<u> </u>	<u> </u>			•	<u> </u>			
Pyrogallol 10 %	C ₆ H ₃ (0H) ₃ -1,2,3	20		•		•	•	•			
		40		•		•	•				
		60		•	•	•		•	•		
Pyrogallussäure 10 %	C ₆ H ₃ (OH) ₃ -1,2,3	20									
		40		•	•	•					
		60			•	•			•		
Quecksilbercyanid TR	Hg(CN) ₂	20									
		40									
		60			•	•		•			
Quecksilbernitrat GL	Hg(NO ₃) ₂	20									
		40	•	•	•	•	•	•	•	•	
		60		•	•	•	•	•	•		
Rizinusöl H		20									0,96
		40									
		60	•	•	•	•		•	•	•	
Salmiak GL	NH ₄ CI+H ₂ O	20	•	•	•	•		•	•		1,07
		40		•	•	•	•	•	•		
		60	•	•		•	•	•	•	•	
Salmiakgeist GL	NH ₄ OH	20	•	•	•	•	•	•	•	•	
		40	•	•	•	•	•	•	•	•	
		60	•	•	•		•		•	•	
Salpetersäure 10 %	HNO ₃	20	•	•	•	•	•	•	•	•	1,05
		40	0	•	•	•	•	•	•	•	
Salastana in 2007	11112	60	0	•	•	•	•	•	•	•	1 1 0
Salpetersäure 30 %	HNO ₃	20	0	•	•	•	•	•	•	•	1,18
		40	•	•	•	•	•	•	•	•	
Salastana Sura FOO/	11112	60	•	•	•	•	•	•	•	•	1 74
Salpetersäure 50 %	HNO₃	20	•	•	•	•	•	•	•	•	1,31
		40	•		•	•	0	•		•	

SCHMITT		Temperatur °C	Δ.	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Bezeichnung / Formel	LINO		<u>P</u>								<u> </u>
Salpetersäure 50 %	HNO ₃	60 20	•	•	•	•	•	•	•	•	1,41
Salpetersäure 65 %	HNO₃	40					•				1,41
		60									
Salpetrige Säure	HNO,	20				•			•	•	
	2	40	0	•	•	•		•	•	•	
		60	•		0			•			
Salzsäure 10 %	HCI	20	•	•	•	•					1,05
		40			•	0				•	
		60			•	0					
Salzsäure 30 %	HCI	20			•						1,15
		40			•	0		0			
		60			•	0	<u> </u>	•			
konzentrierte Salzsäure	HCI	20			•						1,20
		40			•	0		0			
		60	•	•	•	0	0	•	•	•	
Schwefelchlorid 10 %	S ₂ CI ₂	20	<u> </u>	•	•	•		•	•	•	
Schwefelether TR	$(C_2H_5)_2O$	20	•	•	•	•	<u> </u>	0	•		0,71
Schwefelkohlenstoff TR	CS ₂	20						0			1,27
		40	<u> </u>					•			
		60	<u> </u>	•	•	•		•	•	•	
Schwefelsäure 40 %	H ₂ SO ₄	20			0						1,30
		40			•						
		60	<u> </u>	•	•	<u> </u>		•	•	•	
Schwefelsäure 80 %	H ₂ SO ₄	20	•	•	<u> </u>	•		•	•	•	1,73
		40	•	•	•	<u> </u>	-	•	•	•	
		60	0	•	•	<u> </u>	-	0	•	•	
Schwefelsäure 90 %	H ₂ SO ₄	20	0	•	•	•	•	•	•	•	1,82
		40	0	•	•	•	•	•	•	•	
51. (1"		60	0	•	•	•	•	•	•	•	
Schwefelsäure 98 %	H ₂ SO ₄	20	0	•	•	•	•	0	•	•	1,84
		40	0	•		•	•		•	•	
Cabusatilas Cäura FO W		60		•	0	•	•		•	•	
Schweflige Säure 50 %	H ₂ SO ₃	20	•	•	0	•	•	•	•	•	
		40 60	•	•	•	•	•	•	•	•	
Silbernitrat 8 %	AgNO	20			•					•	1,07
Silverintlat 6 70	AgNO ₃	40									1,07
		60									
Siliconöl TR		20	•				•	•	•	•	1,06
		40				•		•			1,00
			_	_	_		_	_		_	
		60						0			

SCHMITT Persichnung / Formel		Temperatur °C	Ь	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kø/dm³
Bezeichnung / Formel	Na LICO	40	•	<u>ā</u>			<u> </u>	<u> </u>	<u>a</u>	<u> </u>	2 2
Soda 10 %	NaHCO ₃	60	•		•	•					
Speiseöl H		20	•	-	•				•	•	
speiseoi ii		40						•			
		60		•				•			
Spindelöl TR		20		•	•	•	•		•	•	
5p		40	•		•	•		•	•	•	
		60	0	•	•	•	<u> </u>	•	•	•	
Spiritus TR	CH ₃ -CH ₂ -OH	20		•	•	•	•	•	•	•	0,79
•	3 2	40				•	0	•			
		60			•		<u> </u>		•		
Stärkegummi 18 %	C ₆ H ₁₀ O ₅ +H ₂ O	20	•		•	•			•		
	0 10 3 1	40			•	•			•	•	
		60				•					
Stärkegummi GL	C ₆ H ₁₀ O ₅ +H ₂ O	20									
Styrol TR	C ₆ H ₅ CHCH ₂	20	0	<u> </u>			0	•			0,91
Sulfitlauge 10 %	Ca(HSO ₃) ₂	20									
Sulfitlauge GL		20			•	•					
		40									
		60									
Sylvin 10 %	KCI	20			0						
ylvin 10 %		40			0						
		60			<u> </u>	<u> </u>					
Sylvin GL	KCI	20			<u> </u>						1,17
		40			0				•		
		60			•	0					
Terpentinöl H		20	•					•			0,86
		40	•	<u> </u>				•			
		60	•	<u> </u>	•	•	•	•	•	•	
Testbenzin			•	•	•	•	•	•	•	•	
Tetrachlorethan TR	CI ₂ CH-CHCI ₂	20	0		•		0	•			1,60
		40	0				0	•			
		60	•		•	•	<u> </u>	•	•		
Tetrachlorethylen TR	C ₂ CI ₄	20	•	•	•	•		•	•	•	
		40	•		•	•		•	•	•	
		60	•	•		•	•	•	•	•	
Tetrachlorkohlenstoff TR	CCI ₄	20	<u> </u>	•	•	•	•	<u> </u>	•	•	1,59
		40	0	•	•	•	•	•	•	•	
		60	•	•	•	•	•	•	•	•	
Tetrahydrofuran TR	C ₄ H ₈ O	20	0	0	•	•	0	•	•	•	0,89
		40	•	•	•	•	0	•	•	•	
		60									

38 Stand: 05/2020

Bezeichnung / Formel		Temperatur °C	8	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	EPDM	PTFE/FEP	FFKM	Dichte kg/dm³
Tetrahydronaphtalin 100 %	C ₁₀ H ₁₂	40	•		•	•	•	•	•	•	
		60	•	•	•	•		•	•	•	
Tetralin 100 %	$C_{10}H_{12}$	20	•					0			0,97
		40	•	•	•	•		•	•		
		60	•	•	•	•	•	•	•	•	
Thiofuran	C ₄ H ₄ S	20	<u> </u>	•	•	•		•		•	
Thionylchlorid TR	SOCI ₂	20	•	•	•	•	•	•	•	•	1,66
		40	•	•	•	•	•	•	•	•	
T1.	5.11.5	60	•	•	•		•	•		•	
Thiophen	C ₄ H ₄ S	20		•	•		•	•		•	1.00
Tinte H		20	•	•	•	•	•	•		•	1,00
Toluol	C ₇ H ₈	20 40	•	•	•	•	•	•	•	•	0,87
		60	•				•				
Transformatorenöl TR		20		•		•	•	•	•	•	
Transformatorenor TK		40						•			
		60	•		•	•	•	•		•	
Traubenzuckerlösung GL	C ₆ H ₁₂ O ₆	20	•	•	•	•	•	•	•	•	1,13
0	-b 12 b	40	•	•	•	•	•	•	•	•	
		60	•	•		•		•			
ributylphosphat TR	C ₁₂ H ₂₇ O ₄ P	20	•			•			•		0,98
		40					0				
		60					•				
Trichlorbenzol	C ₆ H ₃ Cl ₃	20	<u> </u>								
		40	<u> </u>								
		60	0					0			
Trichloressigsäure 50 %	CCI ₃ CO ₂ H	20			•		•				
		40	•		•	•	•	0			
		60		•	•		•	•			
Trichloressigsäure TR	CCI ₃ CO ₂ H	20			•		•				1,62
		40	0	•	•	•	•	0	•	•	
		60	0	<u> </u>	•	•	•	•	•	•	
Trichlorethan TR	C ₂ H ₃ Cl ₃	20	0	•	•	•	0	•	•	•	1,34
Trichlorethen 50 %	C ₂ HCl ₃	20	0	•	•	•	0	•	•		
		40	<u> </u>	•	•	•	0	•	•	•	
T.11 TO		60	0	•	•	•	•	•	•	•	
Trichlorethen TR	C ₂ HCl ₃	20	0	•	•	•	•	•	•	•	1,47
		40	•	•	•	•	0	•	•	•	
Trichlorothylon 50%	C 11C1	60	•	•	•	•	0	•	•	•	
Trichlorethylen 50 %	C ₂ HCI ₃	20	0	•	•	•	0	•	•	•	
		40 60	•	•	•	•	•	•	•	•	
Trichlorethylen TR	C HC		•	•		•		•		•	1 47
memorethylen IK	C ₂ HCl ₃	20									1,47

Bezeichnung / Formel		Temperatur °C	В	PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	FKM	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
Trichlorethylen TR	C ₂ HCI ₃	40	•	•	•	•	•	•	•		
		60	•	•	•	•	<u> </u>	•	•	•	
Trichlormethan TR	CHCI ³	20	<u> </u>	•	•	•		•	•	•	1,48
Trichlorphenol	C ₆ H ₃ CI ₃	20	0	•	•	•	•	•	•	•	
		40	0	•	•	•	•	•	•	•	
Triadhulamin TD	C.H. N.	60	•	•	•	•	•	•	•	•	
Triethylamin TR	$C_6H_{15}N$	20 40		•	•	•	•	•	•	•	0,73
Trihydroxybenzolsäure 50 %	C ₆ H ₂ (OH) ₃ CO ₂ H	20			•		•			•	
Trijodmethan	CHJ ₃	20	•	•	•	•	•	•	•	•	
journet.idii	2. 1,3	40			•	•	•	•	•	•	
		60	•	•	•	•	•	•	•	•	
Trikresylphosphat TR	PO ₄ (C ₆ H ₄ CH ₃) ₃	20				•	•	<u> </u>			1,13
	0 , 33	40	•		•	•	•	•	•	•	
		60	0				•	•			
Trinatriumphosphat 10 %	Na ₃ PO ₄	20		•		•	•	•			
		40									
		60									
Triol TR	$C_4H_{10}O_3$	20		•	•	•	•	•		•	
berchlorsäure 20 %	HCIO ₄	20			•	•					
		40									
		60		•	•	•	•	<u> </u>	•	•	
Überchlorsäure 50 %	HCIO ₄	20								•	1,40
		40									
		60	<u> </u>	•	•	•	<u> </u>	0	•	•	
Überchlorsäure 70 %	HCIO ₄	20	•	•	•	•	•	•	•	•	1,55
		40	•	•	•	•	•	•		•	
	usio	60	•	•	•	•	•	•	•	•	
Überchlorsäure GL	HCIO ₄	20	•	•	•	•	•	•	•	•	
		40 60	•	•	•	•	•	•	•	•	
Urin		20			•			•		•	
OTIII		40									
		60									
Vinylacetat TR	C ₄ H ₆ O ₂	20	•	•	•	•	•	•	•	•	0,93
J	24,1602	40	•	•	•	•	•	•	•	•	
		60	•		•	•	•	•	•	•	
Vinylbenzol TR	C ₆ H ₅ CHCH ₂	20	•		•	•		•	•	•	0,91
Vinylcarbinol 96 %	H ₂ C-CH-CH ₂ -OH	20	•	•	•	•	0	0	•	•	0,87
		40			•	•	•	0			
		60					•	0	•		
Vinylcyanid TR	CH ₂ -CH-CN	20					0	0	•		0,81
			0	0		•	•	0			

TR = technisch rein, GL = gesättigte Lösung, H = handelsübliche Zusammensetzung, 🌑 = beständig, 🔵 = bedingt beständig, 🌑 = nicht beständig

 \mathbb{W}

Stand: 05/2020 41

,	歩 SCHMITT		Temperatur °C		PVDF	Edelstahl 1.4571	Hastelloy C4 2.4610	Σ	ЕРОМ	PTFE/FEP	FFKM	Dichte kg/dm³
	Bezeichnung / Formel		မ်	РР	P	1.4 1.4	Ha 2.4	FKM				Dic kg/
	Wollfett TR		60	•			•	•	•	•	•	
	Würfelsalpeter 45 %	NaNO ₃	20									1,37
			40				•		•	•		
			60			•	•		•	•		
Χ	Xylol TR	$C_6H_4(CH_3)_2$	20	•	•		•		•	•		0,86
			40	•	•	•	•	<u> </u>	•	•		
			60	•	<u> </u>	•	•	<u> </u>	•	•		
Z	Zahnpasta H		20		•	•	•		•	•	•	
	Zinkchlorid 20 % Zinkchlorid 75 %	ZnCl ₂	20									1,19
			40									
			60				•					
		ZnCl ₂	20			•						2,07
			40			•						
			60			•						
	Zinksulfat 10 %	ZnSO ₄	20									1,11
			40									
			60							•		
	Zinksulfat GL	ZnSO ₄	20									1,38
			40									
			60									
	Zinkvitriol 10%	ZnSO ₄	20				•					1,11
			40				•					
			60									
	Zinkvitriol GL	ZnSO ₄	20									1,38
			40				•					
			60				•					
	Zinn-II-Chlorid 20 %	SnCl ₂	20		•	<u> </u>	•		•	•		1,17
			40			0	•		•			
			60			0						
	Zitronensäure 50 %	C ₆ H ₈ O ₇	20						•	•		1,22
		0 0 7	40			0						
			60			0						

42 Stand: 05/2020

SCHMITT-Kreiselpumpen GmbH & Co. KG

Einsteinstraße 33

76275 Ettlingen, Deutschland

Telefax: +49 (0)7243 5453-22

E-Mail: sales@schmitt-pumpen.de

Der direkte Draht:

Telefon: +49 (0)7243 5453-0

www.schmitt-pumpen.de